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Abstract

In this review, the concept of oxygen homeostasis will be presented as an organizing principle for

discussion of the phylogeny, ontogeny, physiology, and pathology of blood vessel formation and remodeling, with a
focus on molecular mechanisms and potential therapeutic applications. J. Cell. Biochem. 102: 840-847, 2007.
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OXYGEN HOMEOSTASIS

All metazoan species are dependent upon a
continuous supply of Oy in order to survive. The
roundworm Caenorhabditis elegans consists of
less than one thousand cells, which receive O
by simple diffusion from the air. In the fruit fly
Drosophila melanogaster, the presence of multi-
ple cell layers necessitates the existence of a
specialized system of tracheal tubes to conduct
air to all cells of the organism [Gorr et al., 2006].
In vertebrates, the much larger body size
requires an even more complex strategy of Og
delivery involving a respiratory system, which
provides a large pulmonary alveolar surface
area for gas exchange, and a circulatory system,
consisting of blood, heart, and blood vessels to
deliver Os to all cells of the body. Although the
circulatory system also functions to deliver
nutrients and remove toxic metabolic wastes
from the tissues, its principal function is to
maintain oxygen homeostasis by precisely mod-
ulating O, delivery to meet the demands
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imposed by cells within every tissue. Thus, the
requirement to maintain oxygen homeostasis
represented an important driving force for the
evolution of organisms with increasing biolog-
ical complexity.

In mammals, the requirement for a function-
ing circulatory system occurs early in develop-
ment when diffusion from blood vessels in the
surrounding uterine tissues becomes insuffi-
cient to supply adequate O, to all cells of the
growing embryo. In mice, failure to establish
a functioning circulatory system by embryonic
day 10 results in lethality. In humans, all of
the major disease causes of mortality involve
changes in tissue vascularization and O deliv-
ery. Thus, oxygen homeostasis is an organizing
principle for understanding evolution, develop-
ment, and disease pathophysiology. This review
will examine the molecular mechanisms under-
lying angiogenesis and related processes of
vessel formation and remodeling from this
physiological perspective.

PROCESSES OF VESSEL FORMATION
AND REMODELING

Three major processes by which blood vessels
are formed and remodeled are referred to as
vasculogenesis, angiogenesis, and arteriogene-
sis [Carmeliet, 2004]. Vasculogenesis denotes
de novo blood vessel formation during embryo-
genesis, in which angiogenic progenitor cells
migrate to sites of vascularization, differentiate
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into endothelial cells, and coalesce to form the
initial vascular plexus [Risau and Flamme,
1995; Carmeliet, 2003]. The budding of new
capillary branches from existing blood vessels is
termed angiogenesis. Arteriogenesis refers to
the remodeling of an existing artery to increase
its luminal diameter in response to increased
blood flow [Heil et al., 2006].

Capillaries are tubes formed by endothelial
cells, which are supported by vascular peri-
cytes. Arteries and veins are tubes that consist
of multiple layers: the intima, which is com-
posed of endothelial cells, pericytes, and a
basement membrane; the media, which is
composed principally of smooth muscle cells
and their extracellular matrix; and, in the
largest vessels, the adventitia, which is com-
posed principally of fibroblasts and their extrac-
ellular matrix. The formation of the initial
vascular plexus within each tissue, as well as
the later formation of the major blood vessels
that conduct blood to and from the heart, appear
to occur in a hard-wired, stereotypical fashion
that is independent of Oy concentration. In
contrast, the pattern of capillaries that develops
within each tissue of an individual isunique and
is driven by local O, demand.

VASCULAR RESPONSES TO
HYPOXIA/ISCHEMIA

In adults with systemic hypertension, the
left ventricle must pump against increased
resistance. In order to do so, the heart hyper-
trophies and the increase in cardiac muscle
mass is associated with an obligate increase in
O, consumption. The imbalance between Oy
supply and demand leads to hypoxia, which is
a physiological stimulus that induces cells
to produce angiogenic cytokines such as
vascular endothelial growth factor (VEGF).
These secreted proteins bind to cognate recep-
tors (VEGFRs) on endothelial cells and acti-
vate signal transduction pathways that
stimulate the cells to undergo sprouting angio-
genesis (Fig. 1). Thus, in order to satisfy this
increased demand for Oy, angiogenesis occurs to
provide new capillary branches. VEGF is pro-
duced early in the angiogenic cascade and is
responsible for initial activation of endothelial
cells [Carmeliet, 2003; Ferrara et al., 2003].

Although VEGF is necessary for vessel for-
mation it may not be sufficient. In addition
to promoting angiogenesis, VEGF promotes inc-

reases vascular permeability [Dvorak, 2006].
Transgenic expression of VEGF in mouse skin
results in increased numbers of blood vessels
that manifest excessive permeability, whereas
expression of both VEGF and angiopoietin 1
(ANGPT1) results in increased vessels without
excessive permeability [Thurston et al., 1999],
an effect that is probably due to the ability of
ANGPT1 torecruit pericytes tothe endothelium
[Hanahan, 1997]. In contrast, transgenic co-
expression of ANGPT1 in the heart blocks the
angiogenic effect of VEGF [Visconti et al., 2002].
Placental growth factor (PLGF) plays a critical
role in ischemia-induced angiogenesis and has
synergistic effects with VEGF in some tissues
[Carmeliet et al., 2001; Luttun et al., 2002].
Synergistic effects of combined treatment
with platelet-derived growth factor (PDGF)-
BB and fibroblast growth factor-2 have also
been reported [Cao et al., 2003]. Two important
conclusions can be drawn from these data: (i)
Increased expression of a single angiogenic
factor may not be sufficient for functional vas-
cularization. (ii) The effects of angiogenic fac-
tors may be tissue-specific.

In adults with atherosclerosis, narrowing
of large conduit vessels in the heart (coronary
artery) or limb (femoral artery) leads to reduced
perfusion of tissue downstream of the stenosis.
In response to the hypoxia that results from
inadequate perfusion (ischemia), cells produce
VEGF and other angiogenic cytokines, which
stimulate local endothelial cells to proliferate
and to undergo sprouting angiogenesis as
described above. However, because the primary
cause of the ischemia is stenosis of a large
conduit vessel, the formation of additional
capillaries cannot correct the problem. Thus,
in addition to angiogenesis, pre-existing collat-
eral vessels are remodeled by an increase in
luminal diameter to accept increase blood flow
and thereby provide a means to bypass the
stenotic vessel.

In addition to their ability to activate vascular
endothelial cells within the ischemic tissue,
certain angiogenic cytokines, such as VEGF,
PLGF, and stromal-derived growth factor 1
(SDF-1), stimulate the mobilization of a hetero-
geneous population of angiogenic cells from the
bone marrow and other tissues (Fig. 1), and
their recruitment to sites of angiogenesis and
arteriogenesis [Ceradini et al., 2004; Grune-
wald et al., 2006; Jin et al., 2006]. Although
this process of angiogenic cell recruitment is
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Fig. 1. Molecular mechanisms of oxygen homeostasis. Left,
under normoxic conditions, HIF-1a. is synthesized, but is rapidly
subjected to prolyl hydroxylation by the PHD2-OS9 complex
and asparaginyl hydroxylation by FIH-1 (not shown). Prolyl
hydroxylated HIF-1a is bound by VHL, which together with
SSAT2 recruits Elongin C, which in turn recruits a ubiquitin ligase
complex containing Elongin B (B), ring box protein 1 (RBX1),
cullin 2 (CUL2), and an E2 ubiquitin conjugating enzyme.
Ubiquitination of HIF-1a. targets the protein for degradation by
the 26S proteasome. Right, under hypoxic conditions, HIF-1a

sometimes referred to as vasculogenesis, it
appears to be quite different from the process
that occurs during the formation of the initial
embryonic vascular plexus. Among the impor-
tant distinctions are the following: (i) Formation
ofthe initial vascular plexusin the embryois not
driven by oxygen gradients. (ii) Many of the cells
recruited to sites of postnatal angiogenesis or
arteriogenesis are inflammatory cells that are
not directly incorporated into the new capilla-
ries or remodeling arteries, respectively.
Among the cell types that may participate in
these responses are endothelial progenitor cells
[Asahara et al., 1997], which by definition
incorporate into the endothelium of new or
remodeling vessels [Yoder et al., 2007], as well
as myeloid, mesenchymal, and hematopoietic
progenitor cells, which promote vascular
growth and remodeling through production of
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accumulates, dimerizes with HIF-1B, recruits the coactivators
CBP/p300, and activates the transcription of genes encoding
angiogenic cytokines including PLGF, VEGF, and SDF-1. The
protein products of these genes are secreted and bind to their
cognate receptors (VEGFR1, VEGFR1/VEGFR2, and CXCR4,
respectively), which are located on the plasma membrane of
vascular endothelial cells and circulating angiogenic cells. The
diagram is simplified: cells may express one, two, or three of the
receptors shown, as well as receptors for other cytokines, which
are not shown.

additional angiogenic cytokines. We designate
this heterogeneous population of cells that is
mobilized in response to ischemia as circulating
angiogenic cells. The most important prerequi-
site for a cell to be directly recruited to ischemic
tissue in response to the production of an
angiogenic cytokine is that the recruited cell
must express the cognate receptor on its plasma
membrane (Table I).

TABLE 1. Angiogenic Growth Factors/
Cytokines and Their Cognate Receptors

Receptor Ligand(s)
C-KIT SCF
CXCR4 SDF-1

TIE2 ANGPT1, ANGPT2
VEGFR1 PLGF, VEGF
VEGFR2 VEGF
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Clinical trials of individual angiogenic fac-
tors, such as VEGF, for treatment of ischemic
cardiovascular disease have failed to demon-
strate efficacy [Henry et al., 2003]. This result is
consistent with the studies in mice cited above
that indicated a requirement for multiple angio-
genic factors [Blau and Banfi, 2001; Bruick and
McKnight, 2001]. Attempts to stimulate tissue
vascularization and repair following myocardial
infarction by administration of autologous bone
marrow cells as a source of angiogenic cells have
not met with great success [Rosenzweig, 2006].
It appears that the angiogenic response to
ischemia is impaired at multiple levels in
patients, resulting in decreased production of
angiogenic cytokines in response to hypoxia/
ischemia, decreased numbers of angiogenic
cells bearing receptors for these cytokines, and
decreased ability of these cells to home to
ischemic tissue and promote vascular remodel-
ing and repair. The multifactorial causes of
these impaired responses include aging, hyper-
lipidemia, and diabetes [Dimmeler and Zeiher,
2004] as well as differences in genetic back-
ground [Rohan et al., 2000; Resar et al., 2005;
Shaked et al., 2005]. Multiplex therapies may be
required to overcome these multifactorial
impairments [Gallagher et al., 2007].

MOLECULAR MECHANISMS OF
ISCHEMIA-INDUCED VASCULARIZATION

As described above, the circulatory system
evolved as a mechanism for optimal Oy delivery
to all cells despite the greatly increased body
size of vertebrates. The vascular responses to
ischemia are primarily based on the sensing of
reduced O, concentrations by cells within
ischemic tissue, which leads to the increased
expression of genes encoding angiogenic growth
factors. At the center of thisresponse pathway is
hypoxia-inducible factor 1 (HIF-1), which is a
heterodimeric transcription factor that is com-
posed of a constitutively expressed HIF-1fB
subunit and an oxygen-regulated HIF-1a sub-
unit [Wang and Semenza, 1995; Wang et al.,
1995]. The HIF-1a subunit is continually syn-
thesized and degraded within adequately per-
fused cells with normal oxygenation (Fig. 1).
Under hypoxic conditions, the degradation of
HIF-1aisinhibited, leading to its accumulation,
dimerization with HIF-13, DNA binding,
recruitment of co-activators, and transcrip-
tional activation of target genes.

HIF-1a is subjected to Os-dependent ubiqui-
tination that is initiated by the binding of the
von Hippel-Lindau tumor suppressor protein
(VHL) and its recruitment of an E3 ubiquitin-
ligase complex [Salceda and Caro, 1997; Max-
well et al., 1999] that contains Elongin C,
Elongin B, Cullin 2, and RBX1. The binding of
VHL is dependent upon the hydroxylation of
proline residue(s) 402 and/or 564 of HIF-1la
[Ivanetal., 2001; Jaakkolaet al., 2001; Yuetal.,
2001]. The HIF-1a prolyl hydroxylases that
perform this reaction are dioxygenases that
utilize O as a substrate [Schofield and Ratcliffe,
2005]. One oxygen atom is inserted into the
HIF-1a prolyl residue to form a 4-hydroxyl
group and the other oxygen atom is inserted
into the co-substrate a-ketoglutarate, forming
succinate and COg as side products. Under
hypoxic conditions, the hydroxylase activity is
inhibited and the half-life of HIF-1a increases as
aresult of decreased hydroxylation, ubiquitina-
tion, and degradation. Although three HIF-1a
prolyl hydroxylases have been identified, the
activity of PHD2 determines the basal levels of
HIF-1aunder aerobic conditions. Changes in O,
concentration are very rapidly transduced to
changesin HIF-1a protein levels. The speed and
precision of this Os-dependent regulation
appears to reflect the involvement of multi-
protein complexes in hydroxylation and ubig-
uitination (Fig. 1). OS-9 binds to both HIF-1a
and PHD2 and is required for efficient hydrox-
ylation [Baek et al., 2005], whereas SSAT2
binds to HIF-1a, VHL, and Elongin C and is
required for efficient ubiquitination [Baek et al.,
2007].

In addition to prolyl hydroxylation, HIF-1a is
also subjected to Os-dependent hydroxylation of
asparagine residue 803 in the transactivation
domain by factor inhibiting HIF-1 (FIH-1),
which is another dioxygenase that utilizes O,
and o-ketoglutarate [Peet and Linke, 2006].
Hydroxylation of asparagine-803 prevents the
interaction of HIF-lo with the co-activators
p300 and CBP. Thus, both the half-life and
transcriptional activity of HIF-1o are regulated
by Os-dependent hydroxylation events that
provide a direct mechanism by which changes
in Oy concentration can be transduced to the
nucleus as changes in the activity of HIF-1.

HIF-1a expression is required for proper vas-
cularization of the mouse embryo [Iyer et al.,
1998; Ryan et al., 1998]. HIF-1x is necessary and
sufficient for the hypoxia-induced expression of
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multiple angiogenic growth factors including
VEGF, PLGF, ANGPT1, ANGPT2, and PDGFB
[Kelly et al., 2003]. Administration of AACA5,
an adenovirus encoding an engineered form of
HIF-1a that is constitutively active due to the
presence of a deletion and point mutations that
block Os-dependent degradation of the protein,
promotes the recovery of blood flow following
limb ischemia by stimulating increased angio-
genesis and arteriogenesis [Patel et al., 2005].
Administration of vector encoding a chimeric
protein containing the dimerization and DNA
binding domains of HIF-1a fused to the VP-16
transactivation domain has also been shown to
promote recovery of blood flow following femoral
artery ligation [Vincent et al.,, 2000] and is
currently being evaluated as a therapy for
critical limb ischemia in no-option patients
[Rajagopalan et al., 2007].

Whereas transgene-directed expression of
VEGF in the skin induces both hypervasculari-
zation and hyperpermeability [Thurston et al.,
1999], expression of a constitutively active form
of HIF-1a from the same transgene construct
induces hypervascularization without hyper-
permeability [Elson et al., 2001]. It is likely that
this difference is due to the HIF-1-mediated
expression of additional angiogenic factor(s)
that suppress the effect of VEGF on vascular
permeability. Administration VEGF is not
sufficient to induce vascularization in the
superficial capillary layer of the retina, whereas
administration of AACA5 induces robust vascu-
larization, which is associated with increased
expression of mRNAs encoding VEGF, PLGF,
ANGPT1, ANGPT2, and PDGFB [Kelly et al.,
2003]. These results are consistent with the
conclusion from earlier studies that physiolog-
ical angiogenesis occurs through the action of
multiple angiogenic growth factors. Remark-
ably, these factors appear to be coordinately
regulated by HIF-1.

In addition to its role in stimulating angio-
genic growth factor expression in hypoxic
tissues, HIF-1 plays important cell-autonomous
roles in endothelial cells [Tang et al., 2004;
Manaloetal., 2005; Calvaniet al., 2006]. Inbone
marrow-derived mesenchymal stem cells
(MSCs), HIF-1 is required for the expression of
VEGFR1 and the chemotactic migration of
MSCs towards a gradient of VEGF or PLGF
[Okuyama et al., 2006]. HIF-1 has also been
implicated in the expression of SDF-1 and the
SDF-1-dependent recruitment of CXCR4" pro-

genitor cells in a mouse skin flap model of
ischemia [Ceradini et al., 2004].

ANGIOGENESIS IN CANCER

The growth of cancers is dependent upon
angiogenesis [Folkman, 1995; Carmeliet and
Jain, 2000]. Hypoxia-induced and HIF-1-medi-
ated angiogenic growth factor production plays
a major role in tumor vascularization [Acker
and Plate, 2003; Pugh and Ratcliffe, 2003]. HIF-
1 gain-of-function in human colon cancer cells
and HIF-1 loss-of-function in human gastric
cancer cells resulted in increased and decreased
vascularization of tumor xenografts, respec-
tively [Ravi et al., 2000; Stoeltzing et al.,
2004]. The targeted knockout of HIF-1a expres-
sion selectively in endothelial cells also
impaired the vascularization of tumor xeno-
grafts in mice [Tang et al., 2004]. Thus, HIF-1
activity is required in both tumor and stromal
cells for maximal vascularization.

There is great interest in therapeutic target-
ing of the HIF-1 — VEGF — VEGFR signaling
axis as a novel strategy for cancer therapy.
Bevacizumab, a humanized monoclonal anti-
body against VEGF, is the first anti-angiogenic
agent to be approved by the FDA for the
treatment of cancer [Shojaei and Ferrara,
2007]. Low-molecular weight compounds, such
as Sunitinib, which inhibit the tyrosine kinase
activity of the VEGF, PDGF, and SCF receptors
are also in clinical trials [Roskoski, 2007]. The
cytotoxic effect of radiation therapy may be due
in part to radiation-induced apoptosis of endo-
thelial cells, which leads to reduced tumor cell
perfusion and a secondary hypoxia-induced
apoptosis of tumor cells [Garcia-Barros et al.,
2003]. Recent studies of tumor xenografts in
mice suggest that activation of HIF-1 following
radiation may induce a protective angiogenic
response that blocks endothelial cell death
[Moeller et al., 2004]. Inhibition of HIF-1
[Moeller et al., 2004] or the downstream
angiogenic response [Magnon et al., 2007]
results in increased tumor cell killing.

CONCLUSION

Changes in tissue vascularization play crit-
ical roles in the pathophysiology of ischemic
cardiovascular disease and cancer. Progress
in understanding the molecular, biochemical,
and physiological mechanisms that underlie



Blood Vessel Formation and Remodeling 845

vascular responses to hypoxia and ischemia
have led to novel therapeutic approaches for
these diseases, which are the major causes of
mortality in the developed world. However,
because of the great complexity of these res-
ponses and the multifactorial changes imposed
by disease states, our knowledge remains rudi-
mentary. Further research is likely to increase
our ability to discover new therapies and to
identify, among patients with a particular
diagnosis, the subgroup for which any partic-
ular therapy will do the greatest good.
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